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Abstract

In the first few hours following Newcastle disease viral infection of human monocyte-derived dendritic cells, the induction of
IFNB1 is extremely low and the secreted type I interferon response is below the limits of ELISA assay. However, many
interferon-induced genes are activated at this time, for example DDX58 (RIGI), which in response to viral RNA induces IFNB1.
We investigated whether the early induction of IFNBI in only a small percentage of infected cells leads to low level IFN
secretion that then induces IFN-responsive genes in all cells. We developed an agent-based mathematical model to explore
the IFNBI and DDX58 temporal dynamics. Simulations showed that a small number of early responder cells provide a
mechanism for efficient and controlled activation of the DDX58-IFNBI positive feedback loop. The model predicted
distributions of single cell responses that were confirmed by single cell mRNA measurements. The results suggest that large
cell-to-cell variation plays an important role in the early innate immune response, and that the variability is essential for the
efficient activation of the IFNB1 based feedback loop.
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Introduction

The innate immune response to viral infection is essential in

fighting infections, and the dynamics of the response can

determine whether the infection evolves into pathology [1].

Dendritic cells (DCs) are the primary response cells mediating

the progression from innate to adaptive immunity and the

induction of self-tolerance [2,3]. It has recently been recognized

that understanding the internal dynamics of DCs following viral

infection can help elucidate the function of the immune system

and help lead to better vaccination protocols [4,5,6,7]. Many

viruses have evolved immune antagonists that subvert the innate

immune response and facilitate their replication. Newcastle disease

virus (NDV), however, is an avian virus that lacks a functioning

immune antagonist for human cells [7,8,9]. Therefore it efficiently

stimulates the innate immune response and represents an ideal

stimulus with which to probe the activation dynamics of human

DCs.

Upon viral infection of DCs, constitutive RIG-I proteins (coded

from the gene DDX58) can be activated upon detecting evidence of

negative stranded viruses such as NDV in the cytoplasm, leading

to IFNB1 induction through a signaling cascade. IFNB1 encodes

IFNb, which is a type 1 interferon (IFN) that is secreted into the

extracellular medium, where it binds to IFN cell surface receptors

on the secreting cell and on neighboring cells. This binding

activates a gene program that plays an essential role in both the

DC antiviral response [10] and in DC maturation [9,11], and

causes the up-regulation of many genes [12]. In particular, IFNb
binding activates the Jak/Stat pathway, inducing the DDX58 gene

and leads to RIG-I production. In infected cells, the activation of

newly induced RIG-I, as well as of other genes involved in

interferon induction such as IRF7 [13], leads to additional IFNB1

production, thus completing an IFNB1-DDX58 positive feedback

loop.

Previous single cell measurements of IFNB1 induction in NDV

infected human monocyte-derived dendritic cells (MDDCs)

showed large cell-to-cell variation ranging over 3–4 orders of

magnitude at 8–10 hours after infection. These results, comple-

mented by simultaneous measurements of DDX58 (coding for

RIG-I) production at 6 and 10 hours, are confirmed by the

experiments presented here. Taking as a starting point the

observed stochasticity of the cellular IFNB1 response, we

developed a stochastic agent-based model (ABM) that, after a fit

to the later time data points, allowed extrapolation to early times

after infection, where direct measurements are very difficult due to

sampling limitations. Model simulations suggest that there is a

small subset of early responder cells responsible for propagating

cellular resistance to viral infection through the efficient activation

of the IFNB1-DDX58 feedback loop. The existence of such a subset

resolves an apparent paradox of average cellular response, namely

the fact that contrary to the temporal order of the feedback loop,

IFNB1 production remains near the limit of detection until 6 hours

after infection, whereas that of DDX58, induced by IFNb through

the feedback loop, reaches a significant level of expression several
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hours earlier. This paradox in the average response illustrates how

average cell responses can obscure the actual single cell response

dynamics and support the role of cell-to-cell response variability in

maintaining an efficient and controlled immune response.

Results

The population (average) levels of IFNB1 and DDX58

transcripts in human MDDCs were measured as a function of

time following NDV infection at multiplicity of infection,

MOI = 0.5, as shown in Figure 1 (see also Supplementary

Figure S1). Our previous work [14] showed that at ten hours post

infection both genes have reached approximately maximal

expression levels. Half-maximal DDX58 expression occurred

approximately 3 hours after infection, while half-maximal IFNB1

expression occurred 4–5 hours later. The time course for synthesis

of the NDV L gene at 0, 3, 6, and 10 hours post infection

(Supplementary Figure S1C) showed significant NDV genome

replication well before the half-maximal expression level of IFNB1

was reached. MXA induction (Supplementary Figure S1D)

mimicked that of DDX58 (Supplementary Figure S1B), and

IFNA1 induction (Supplementary Figure S1E) mimicked that of

IFNB1 (Supplementary Figure S1A), as expected from their

common activation pathways. However, since DDX58 is an

interferon-induced gene, we would expect its expression to

increase only after IFNB1 expression increases.

Paradoxically, the reverse temporal order is observed

(Figure 1A and Supplementary Figure S1). However, close

inspection of the data (Supplementary Figure S2A) shows

evidence for an initial and small first phase of IFNB1 induction

that begins as early as 1 hour after infection and never reaches

levels above 1% of maximum until the sizeable induction observed

after 6 hours. To evaluate the robustness of this low level IFNB1

induction, we performed similar experiments with MOI = 0.1, 0.5,

1.0, 2.0 and 5.0 (Supplementary Figure S2), and obtained similar

results. These findings demonstrate that an early low level of

induction of IFNB1 precedes - and therefore might be responsible

for - the induction of DDX58.

The role of this early IFNb in the induction of DDX58 was

tested by performing population and single cell assays measuring

IFNB1 and DDX58 in the presence and absence of antibodies that

attenuate extracellular interferon signaling. Cells were infected at

an MOI = 0.5. As shown in Figure 2A, a mixture of antibodies

binding interferons and the interferon receptor eliminated the

induction of DDX58 and dramatically reduced induction of

IFNB1, confirming the formulation that IFNb produced from

the nearly undetectable levels of early IFNB1 is responsible for the

apparently paradoxical induction of DDX58.

As only half the cells were infected, in order to determine the

distribution of responses observed in individual cells, we

performed single cell mRNA assays (Figure 2B). Notably, in

the absence of blocking antibodies about half the cells showed

induction of IFNB1, while all cells showed induction of DDX58. In

the presence of blocking antibodies, most cells showed control

levels of both transcripts. Because IFNB1 is an intronless gene, the

control levels of expression reflect the 4 DNA strands encoding the

gene within each cell (the sense and the anti-sense DNA strands of

the gene on both alleles). In the presence of blocking antibodies, a

few cells were detected that showed a modest induction of INFB1

or of DDX58 greater than the levels measured in control cells.

The results shown in Figure 2B showed significant cell-to-cell

variability in the expression level of IFNB1, which ranged over

three orders of magnitude. One factor that can differ among cells

is their degree of differentiation, which is reflected in the level of

the differentiation marker CD14. In order to test whether this

variability contributes the large variation in gene induction with

virus infection, we sorted cells into high and low CD14

subpopulations prior to infection with virus. In both groups, a

similar and broad distribution of single-cell IFNB1 gene responses

was observed (Supplementary Figure S3). These results suggest

that the heterogeneous levels of IFNB1 in individual cells does not

result from cell heterogeneity in differentiation and reflects both

the absence of expression in uninfected cells and the noise in the

transcriptional induction of this gene.

What is the source of the low level of IFNB1 detected at early

time points after virus infection that is necessary to initiate the

positive feedback loop and generate a full antiviral response?

Given the high intercellular variation in responses, the most

parsimonious hypothesis is that a few infected cells are competent

to induce IFNB1 before interferon activation of JAK-STAT

signaling. We explored this hypothesis and its implications by

developing a formal model of the system that could lead to testable

predictions.

The model was agent-based (ABM) stochastically simulating

intercellular IFNb signaling and the temporal evolution of the

immune response in individual cells. The constitutive RIG-I

distribution across cells, and the parameters of IFNB1 induction

were taken such that only the small number of cells with large

amounts of RIG-I protein responded to infection. (see Materials

and Methods and for additional details). The model can be

accessed at http://tsb.mssm.edu/DCresponse2viralInfABM.

Figure 3A shows the time courses of the average induction of

IFNB1 and of DDX58 obtained in the simulation, which are

consonant with the experimental results shown in Figure 1A. A

more stringent test of the model is provided by the distributions of

single cell results obtained by simulation (Figure 3B). The model

was simulated using a constant parameter set both with and

without blocking antibodies and the pattern of responses in single

cells was determined. The antibody blockage was implemented in

the model by introducing a degradation rate for extracellular

interferon b protein, which allowed it time to bind to the cell that

secreted it, but made it unlikely that it would reach a neighboring

Figure 1. Time course of IFNB1 and DDX58 induction. Measure-
ment of IFNB1 (solid line) and DDX58 (dashed line) expression in human
DCs at 1, 2, 4, 6, 8, 10, 12, 14, 16, and 18 hours following NDV infection.
Percent of maximal induction was measured by microarray, compared
to non-infected control, and shows that half-maximal induction of
DDX58 occurs hours prior to IFNB1 half-maximal induction.
doi:10.1371/journal.pone.0016614.g001

IFNB1-DDX58 Feedback Loop Cell-to-Cell Variability
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cell. The effect of receptor antibody was included by reducing the

receptor binding rate. Uninfected cells can be roughly character-

ized as those with less than ten copies of IFNB1. The RIG-I

mRNA distribution in uninfected cells was considerably shifted

downward when antibodies blocked the paracrine loop

(Figure 3B), as the paracrine loop acts as an inducer of RIG-I.

Furthermore, DDX58 and IFNB1 showed significant correlation

within individual cells at 11 hours, as expected when each cell is

activated only by autocrine signaling.

In order to test the distributions predicted by these simulations,

experiments were performed using single cell assays that simulta-

neously measured both IFNB1 and DDX58. The single cell data

presented in Figure 2B did not include measurement of both

transcripts within each individual cell and could not determine

whether the small number of cells showing increased IFNB1 and

DDX58 levels in the presence of blocking antibodies were the same

subset of cells. As had been seen in the simulations, the

experimentally obtained co-expression measurements in the

presence of blocking antibodies showed a significant correlation

between IFNB1 and DDX58 (Figure 4). Moreover, in the presence

of antibodies the level of RIG-I expression in cells drops overall

(Figure 4), as can also be seen in the simulation results (Figure 3B).

The interpretation of these experimental results that use antibodies

to block interferon signaling is that while the paracrine signaling

appears to be efficiently cancelled, the autocrine loop is leaky,

leading to the observed correlation and higher copy numbers of

IFNB1 at 11 hours. The persistence of control levels of DDX58 and

of IFNB1 in some, presumably uninfected, cells at 11 hours when

antibodies were present also confirmed the effectiveness of the

blockade of paracrine signaling. Overall, the experimental results

are in agreement with the salient features about single cell response

distribution in the absence and presence of blocking antibodies that

were predicted by the model simulations.

This consistency between model and experiment at later times

provides some assurance in using simulations to investigate the

distribution of responses at early time points. The results of such

simulations (Figure 5) support the hypothesis that the initiation of

the positive feedback loop results from a very small number of cells

that are activated and release interferon at early time-points. This

is made clear in Figure 6, where we plot the number of bound

receptors (which is connected to the rate of DDX58 induction)

versus the IFNB1 copy number for specific cells at different times

through the simulation. In the resulting trajectories each point

represents the simulation result at time points separated by 10

minutes. Cellular responses fall into typical patterns for uninfected,

infected early responder and infected late responder cells. For

uninfected cells (Figure 6A) there is no IFNB1 induction despite

increasing receptor binding. For early responder cells (Figure 6C)

Figure 2. DDX58 and IFNB1 mRNA expression level. 2A. Total mRNA copy number. DDX58 and IFNB1 mRNA were measured by quantitative real-
time PCR and the relative IFNB1 and DDX58 expression levels were normalized to ACTB. The columns show the gene expression level 7 hrs post
treatment [NDV only (NDV), NDV plus blocking antibodies (NDV+Abs), not infected (ni), not infected with blocking antibodies (ni+Abs)]. Left panel:
IFNB1. Right panel: DDX58. Error bars represent measurement error. 2B. Single cell mRNA expression. DDX58 and IFNB1 mRNA in individual DCs were
measured 7 hrs post treatment by the hemi-nested PCR protocol illustrated in Supplementary Figure S4. The copy numbers of both DDX58 and
IFNB1 in single DCs (normalized to ACTB) were determined for all cells with detectable expression of the mRNAs. Each symbol shows the gene
expression in a single cell. The treatments were same as those in Figure 2A, but with uninfected DCs labeled as control (Ctr). Left panel: IFNB1. Right
panel: DDX58.
doi:10.1371/journal.pone.0016614.g002
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there is first IFNB1 induction followed by increasing numbers of

bound receptors and IFNB1 through early autocrine and later

paracrine signaling. For late responder cells (Figure 6B) the

behavior at early times is opposite to that of early responders with

infinite slope for the trajectory instead of zero slope: at first the

number of bound receptors increases without any production of

IFNB1 message, indicating paracrine signaling. Later in the

simulation this leads to IFNB1 production with numbers increasing

rapidly through the positive feedback loop. Notably, the ratio

between early and late responders is 7:124 in the simulation,

supporting the hypothesis that a small percentage of the

population is responsible for activating the whole culture of cells.

Figure 6D follows the same cell in two simulations, one without

antibodies (solid line), and one with antibodies (dashed line), and

highlights the effect of suppressing paracrine signaling on late

responder cells. In the simulation with no antibodies the cell

exhibits a clear late responder trajectory. However, when the

paracrine signaling is suppressed the trajectory becomes similar to

that of an early responder, where IFNB1 induction starts before

any receptors are bound. This induction occurs late in the

simulation and results in lower steady state values, due to partial

blocking of the feedback loop.

Thus far we have shown that the proposed mechanism (of a sub

population of early responders efficiently activating the rest of the

cells) is consistent with the experimental results. Cell-to-cell

variations are essential for the process to occur so that interferon-

induced genes will seem to be activated prior to significant interferon

activation. To test this conjecture, we ran the simulation with

decreasing levels of cell-to-cell variability, while maintaining the

same average initial RIG-I concentration, and the same percentage

of early responding cells To this end, the sensitivity of IFNB1

induction to the concentration of RIG-I (parameter c) was increased

(see Supplementary Text S2, Changing the Variance and

Maintaining Early Responder Percentage, for details). Figure 7

Figure 3. Single DC simulations with and without IFN-blocking antibodies. 3A. Time course of the average copy number of IFNB1 (solid line)
and of DDX58 (dashed line) obtained from the simulation with the ABM model. 3B. Scatter plots display IFNB1 (X axis) and DDX58 (Y axis) mRNAs copy
numbers in each single DC as simulated with the ABM model. Simulations without blocking antibodies (upper panel) or with blocking antibodies
(lower panels) are shown at 6 hrs (left) and 11 hrs (right) post infection.
doi:10.1371/journal.pone.0016614.g003

IFNB1-DDX58 Feedback Loop Cell-to-Cell Variability

PLoS ONE | www.plosone.org 4 February 2011 | Volume 6 | Issue 2 | e16614



www.manaraa.com

IFNB1-DDX58 Feedback Loop Cell-to-Cell Variability

PLoS ONE | www.plosone.org 5 February 2011 | Volume 6 | Issue 2 | e16614



www.manaraa.com

shows the original simulation results and the results of a simulation

with initial conditions with 10 times less variability in the initial

DDX58 distribution. As the variance is decreased, the sensitivity of

IFNB1 becomes large enough for small fluctuations in the

concentration of RIG-I to significantly push a cell closer to

activation. As a result, many cells are activated by their internal

levels of RIG-I (which is not significantly different from the average)

and so the average activation of IFNB1 occurs earlier. Figure 7
confirms that decreasing the variability results in similar activation

times for IFNB1 and DDX58, supporting our claim that variability is

essential in order to induce the dynamics seen in the system. We also

note that the simulation with reduced variability results in

significantly higher levels of interferon, which can be harmful. As

such, the early responder dynamics allows an efficient response to the

viral infection while maintaining controlled levels of interferon

induction.

Discussion

The general picture that emerges from our experimental and

modeling studies of the early immune response to viral infection

provides a fine grain, mechanistic view of how a sub-population of

early responder cells can facilitate the activation of a positive

feedback loop in the whole population of cells. Two waves of Type

I IFN induction by NDV infection of murine fibroblasts were

previously observed and attributed to a positive feedback loop of

IFNb and IFNa4 inducing IRF7 [13]. Our single cell level study

results are consistent with a positive feedback loop at the

population level [13]. At early time points after viral infection,

only a few infected cells respond to the infection, while all others

remain unaltered. The early responder cells produce and secrete

interferon that – after binding to interferon receptors – induces

DDX58 both in themselves and in neighboring cells. If a

neighboring cell is already infected, the increased amount of

DDX58 will facilitate viral detection and subsequent IFNB1

production. This process of IFNB1 induction is stochastic,

depending on many sources of noise, among which are the time

to signaling component activation and subsequent time to IFNB1

enhanceosome formation. Even if a neighboring cell is not infected

it will be primed through the induction of DDX58 to better resist

subsequent viral infection. The result is that in all cells DDX58 is

increased beyond the control level (Figure 2B) a few hours after

Figure 5. Single cell simulations of early responder DCs. Simulation scatter plots of IFNB1 (X axis) and of DDX58 (Y axis) copy numbers in
individual DCs at 1, 2, 3 and 4 hours post infection. The simulations were performed with 1000 cells in order to show a sufficient number of cells
responding to infection at early time points.
doi:10.1371/journal.pone.0016614.g005

Figure 4. Experimental results in individual DCs with and without blocking antibodies. The scatter plots display IFNB1 (X axis) and DDX58
(Y axis) copy numbers in individual cells, as determined by the hemi-nested single cell qRT-PCR, and normalized to ACTB. 4A. IFNB1 and DDX58
expression in single DCs with no NDV infection and no antibody blockage. 4B. IFNB1 and DDX58 expression in single DCs following NDV infection. In
the same order as in Figure 3B, experiments without blocking antibodies (upper panels) or with blocking antibodies (lower panels) are shown at 6 hrs
(left) and 11 hrs (right) post infection. Note that the dataset for 6 hours was obtained from donor 1, while the datasets for 11 hours and uninfected
control were obtained from donor 2.
doi:10.1371/journal.pone.0016614.g004
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infection, while it is only at 6 hours after infection that the full

impact of Jak/Stat pathway induction of DDX58 on IFNB1

production is seen at the cell population level as the latter rises

rapidly on average (Figure 1A) with many cells producing a

thousand and more copies (Figures 2,4).

The model time behavior allows one to connect the very early

cellular responses to experimental measurements at 6 and

10 hours that show a large cell-to-cell variability in interferon

induction (Figures 2,4), that is consistent with previous results

[14,15,16]. The fit to these later time data determines model

parameter values, which were then tested by making predictions

and comparing them to experiment when interferon diffusion is

suppressed. The model shows the right qualitative behavior, which

supports the hypothesis that the very early immune response is

carried by a small subset of early responder cells. We have thus

uncovered in the early immune response another instance where

single cell dynamics is different from cell population behavior [17],

as has been shown to occur in various systems such as the Xenopus

oocytes response to progesterone level [18] and PC12 responses to

oxidative stress [19]. In view of the experimental difficulty of

measuring reliably small numbers of mRNA, our methodology

had to rely on a combination of model simulation and

experimental validation, with the model providing the bridge

between the presumed existence of early responder cells and the

later single cell measurements.

One might question some of the simplifying assumptions that

went into our model. Firstly, there is the representation in 2

dimensions of 3 dimensional processes. However, since we impose

in 2 dimensions average experimental cell distance and diffusion

time, we mimic closely in 2 dimensions the temporal 3 dimensional

behavior. Thus a crucial aspect of a realistic situation is preserved,

despite the fact that in 3 dimensions the number of neighboring

cells is larger, which entails that more interferon molecules

impinge on a cell’s surface receptors. The latter situation can

however be compensated for in 2 dimensions by an increase in the

receptor binding probability. Secondly, in terms of intracellular

processes we limit ourselves to those mRNA that are actually

measured, and that compose the DDX58-IFNB1 feedback loop.

Figure 6. Phase space trajectories of individual cells in simulations. Each plot follows a single cell at 10 minute intervals, and plots the
number of bound receptors vs. the number of IFNB1 messages in that cell at that time point. A. An uninfected cell cannot produce IFNB1 message,
and thus exhibits only an increase in the number of bound receptors. B. A late responder cell is characterized by receptors binding before the cell
produces IFNB1 messages, and is thus activated only through paracrine signaling. C. An early responder cell produces considerable amounts of IFNB1
message prior to significant receptor binding, suggesting an autocrine activation. The ratio between early and late responders in the simulation is
7:124. D. A cell that shows a late responder trajectory in the simulation without antibodies (solid line), but changes to a trajectory suggesting
autocrine activation when the simulation includes antibodies (dashed line).
doi:10.1371/journal.pone.0016614.g006
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We are aware that, although DDX58 induction plays a role in

IFNB1 induction through its contribution to viral detection, IRF7,

which is induced at the same time as RIG-I, is important as well in

enhancing interferon production. We concentrated on RIG-I

because of its participation in the interferon feedback loop,

because DDX58 induction averaged over the cell population

occurs unexpectedly earlier than IFNB1 induction, and because in

the model it appeared reasonable to assume that the distribution of

RIG-I across single cells provides the variability that differentiates

early from late responders. Eliminating our simplifying assump-

tions would impose a huge computational burden for the first

assumption, and force the introduction of additional reactions and

unknown parameters for the second one. We have also performed

simulations at lower DC concentration and checked that, although

the activation of the late-responding cells was somewhat delayed,

the results obtained are qualitatively similar.

In the model, cellular heterogeneity results from a distribution

of constitutive RIG-I across cells coupled to a threshold for viral

detection. We do not know whether this mechanism is actually the

one that distinguishes early responder from late responder cells.

We have verified (Supplementary Figure S3) that the heteroge-

neity is not due to the degree of DC differentiation, but other

sources of cell-to-cell variability can of course exist.

Our investigation illustrates some of the advantages of

integrating experimentation with modeling for immunological

studies. Formal modeling sharpens the development of hypotheses

and the interpretations of data. It allows rapid computational

experiments and leads to predictions to guide subsequent bench

experiments. Obtaining representative single cell measurements in

individual infected human dendritic cells at early time points is

difficult. The experimental intractability of this problem is

sharpened by the inability to detect early responder cells even

with the extremely sensitive assay that we used. We note that this

assay is more accurate than a reporter construct, and is a direct

measurement of promoter activity in individual cells. Direct

measurement of IFNb protein production in single cells would be

ideal for testing our hypotheses. However, detection of protein

level by antibody binding assay would require inhibition of IFNb
secretion, which would alter the DC response to viral infection.

The limited detection sensitivity at early time points is also a

barrier to precisely measuring the single cell level of IFNb.

Interestingly, in the key immune response system we have

studied, the emergent system-wide behavior results from, and

depends on, noise, i.e. the enormous response variability between

cells. The noisiness of this system may have physiological

importance beyond merely resolving an experimental population

level paradox in the DDX58-IFNB1 loop. The high degree of

variation in response and its role in initiating the antiviral feedback

loop could play a role in contributing to effective antiviral

responses in vivo to a wide variety of viral pathogens. The capacity

for a few cells to respond early and their capacity to produce an

interferon signal that primes other cells could be beneficial in

helping mount a response to viruses expressing immune

antagonists. Furthermore, the noisiness of the interferon response,

in which a few cells are activated but most remain silent, may help

in avoiding a cytokine storm while mounting an appropriate

response to infection.

Materials and Methods

Differentiation of DCs
All human research protocols for this work have been approved

by the IRB of the Mount Sinai School of Medicine. The IRB of

the Mount Sinai School specifically waived the need for consent

due to use of discarded samples not traceable to source. Monocyte-

derived conventional DCs were obtained from human blood

donors following a standard protocol [20]. Briefly, human

monocytes from buffy coats were isolated by Ficoll density

gradient centrifugation (Histopaque, Sigma Aldrich) and CD14+

monocytes were immunomagnetically purified by using a MACS

CD14 isolation kit (Miltenyi Biotech.). CD14+ monocytes

(0.76106 cells/ml) were later differentiated into immature

MDDCs after 5-6 day incubation in DC growth media [RPMI

Medium 1640 (Gibco), 10% fetal calf serum (Hyclone), 2 mM of

L-glutamine, 100 units/ml penicillin, 100 mg/ml streptomycin

(Pen/Strep) (Invitrogen), 500 U/ml hGM-CSF (Preprotech) and

1000 U/ml hIL-4 (Preprotech)] at 37uC.

Virus preparation and viral infection
The recombinant Hitchner B1 strain of Newcastle disease virus

(rNDV/B1) was prepared as previously described [8,14]. Using

our established protocol [14], the titered NDV stock was diluted

40 times in Dulbecco’s Modified Eagle Medium (DMEM) and

added directly into pelleted MDDCs at a multiplicity of infection

(MOI) of 0.5. MOI was measured as previously described by

determining the frequency of cells expressing the NDV L gene

mRNA [14]. After incubation for 30 minutes at 37uC, fresh DC

growth medium was added back to the infected MDDCs

(16106cells/ml). Virus free allantoic fluid was added to additional

tubes of cells to serve as a negative control.

Antibody blockage
To block IFN signaling, MDDCs (16106 cells/ml) were

pretreated for 30 minutes at 37uC before NDV infection with a

Figure 7. Single DC simulation with high and low cell-to-cell
variation. Time course of the average copy number of IFNB1 per
infected cell (solid line) and of DDX58 (dashed line) obtained from the
simulation with the ABM model. The lines marked by ‘‘Using Fitted
Variance’’ are drawn from a simulation with parameters fitted to the
experimental data, and are identical to the ones shown in Fig. 3A. The
lines marked by ‘‘Using Reduced Variance’’ result from a simulation in
which the variance of the initial DDX58 concentration was reduced 10-
fold. In order to ensure a similar number of early responder cells, the
sensitivity of IFNB1 to RIG-I concentration was increased by more than
30-fold. The reduction in variability leads to results that do not account
for the observed delay in IFN induction relative to DDX58 induction.
Furthermore the highly variable system generates low levels of early
interferon signaling that can initiate antiviral responses without being
prone to later high and potentially toxic levels of interferon secretion.
doi:10.1371/journal.pone.0016614.g007
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cocktail of antibodies including polyclonal sheep anti-human type

I IFNa neutralizing antibodies (PBL Biomedical Laboratories)

(4000 U/mL), polyclonal sheep anti-human type I IFNb neutral-

izing antibodies (PBL Biomedical Laboratories) (4000 U/ml) and

monoclonal mouse anti-human type 1 IFN-a/b receptor chain 2

neutralizing antibodies (Antigenix) (10 mg/ml).

Sorting of single MDDCs
Single MDDCs were directly sorted into 384-well PCR plates as

previously described [14]. Briefly, MDDCs were screened and

sorted by visual light scatter or labeled fluorescence (MoFlo high

speed cell sorter) directly into 384-well bar-coded PCR plates

(Roche LC480), which contained 5 mL cell lysis buffer [4 mM

magnesium acetate (Sigma), 0.05% NP40 (Sigma), 0.8 U/mL

Protector RNAse Inhibitor (Roche Applied Sciences)] in each well.

Sorted MDDCs were immediately placed on dry ice and stored at

–70uC to prevent RNA degradation.

Real time RT-PCR of total RNAs
Cultured human MDDCs (16106cells) were divided into two

samples (56105cells each). Cells in one sample were infected by

NDV at an MOI of 0.5 and cells in another sample were

uninfected and used as an experimental control. Total RNAs were

isolated from both samples using an RNeasy mini kit (Qiagen)

after 10-hour infection. 100 ng of RNA sample was used as

template for real time RT-PCR to determine the expression levels

of IFNB1 and DDX58. The details of the PCR reactions are

presented in Supplementary Text S1 (Detailed PCR Protocols).

The data were normalized to the housekeeping gene ACTB.

Single cell hemi-nested PCR
Single MDDCs were sorted directly into 384-well bar-coded

PCR plates as previous described [14]. Specifically, a 5 mL aliquot

of a 2x AccuRT master mix solution prepared as described above

was added to each well. In control wells with no cells, 1 mL of

genomic DNA of varying dilutions (103–40 copies/mL) was added

along with the 5 mL aliquot of 2x master mix. Hemi-nested PCR

was performed as described in Supplementary Text S1 (Detailed

PCR Protocols) for the multiplex hemi-nested PCR of IFNB1 and

DDX58. PCR results were analyzed with the Roche Lightcycler

480 where the PCR cross point (Cp) value for each amplification

curve was determined by a secondary derivative calculation. Cp

values were converted to copy numbers using the absolute

quantification method based on Cp values for the genomic DNA

standards. An illustration of the experimental procedure is shown

in Supplementary Figure S4 with validation data in Supplemen-

tary Figures S5,S6. A few PCR dropouts (for both IFNB1 and

DDX58) were observed and excluded from analysis.

Agent based model of RIG-I mediated DC response to
viral infection

Single-cell stochastic behavior is important in many biological

processes, leading to phenotypic variability among genetically

identical organisms and determining cellular fate following viral

infection in bacteria and eukaryotic cells [21,22,23,24,25,26,

27,28,29]. In order to test the hypothesis of early responder cells

we developed an agent based model (ABM) that simulates the

IFNB1-DDX58 positive feedback loop. The simulation emulates a

portion of a medium containing both infected and uninfected

MDDCs. The inter-cellular model we use is two dimensional (2d),

and the medium is represented by a square lattice, where each

lattice square has the size of a single cell (Supplementary Figure
S7). Each cell is simulated as an independent agent, where the

agents interface through the extracellular medium. The graphical

display engine generates an animation by depicting the state of the

simulated area at each simulation step.

Where possible, parameters used in the simulation were based

on experimental results. The experimental basis for parameter

values related to extracellular signaling was summarized previously

[30]. We assume that these same values are applicable to our 2d

lattice model. The measured diffusion rate is of the order of

D~3:10{11m2

sec
, and the diameter of a cell is 30 mm. The diffusion

coefficient and the lattice unit size determine the time step in the

simulation, leading to a time step of 9 seconds (as explained

below). We chose the total lattice size according to the diffusion

distance after 11 hours, which is the latest measurement time.

Since the average displacement of a molecule performing a

random walk or diffusing increases like the square root of time this

leads to a lattice size of 40 by 40 units. According to [30], 6.5% of

the medium’s volume is occupied by the cells, which translates to

an average distance between neighboring cells of about 2.5 times

their diameter. We used this average distance between nearest

neighbors in the 2d simulation, which leads to a population of a

little over 200 cells in the whole lattice, distributed randomly.

Intra-cellular simulation
In order to reflect the variations in response that result from a

small number of reactants within individual cells, the dynamics of

each cell was simulated using a stochastic simulation based on

Gillespie’s algorithm. The simulation follows the number of

transcripts of IFNB1 and of DDX58, the number of RIG-I proteins,

and the number of bound receptors on every cell. The initial RIG-

I level in each cell was chosen from a log-normal distribution so

that a small number of cells had a large amount of RIG-I, while

the majority had a small amount [31]. The parameters for IFNB1

induction were chosen so that only cells with sufficient RIG-I

could be induced. RIG-I concentration in infected cells determines

IFNB1 induction in a Michaelis-Menten like form. Bound cell

surface receptors activate DDX58 transcription according to a

Michaelis-Menten like function.

Stochastic Processes, Rates, and Rate Constants
The modified Gillespie algorithm to stochastically simulate each

cell follows the time dependence of IFNB1 transcripts, DDX58

transcripts, and RIG-I proteins. These molecular species are

denoted as IFN, DDX, and RIG, respectively. The simulation

follows six reactions, as summarized in Figure 8: DDX58 message

transcription, IFNB1 message transcription, RIG-I translation,

DDX58 message degradation, IFNB1 message degradation, and

RIG-I degradation.

The rate constants for IFN and DDX transcription are denoted

by KIFN and KDDX , respectively. The translation rate constant for

RIG is given by KRIG . The degradation rate constants for IFN,

DDX, and RIG are given by dIFN ,dDDX , and dRIG , respectively.

The transcription rate DDX58 depends on the number of bound

interferon receptors, denoted by B, in a Michaelis-Menten form

using a Hill coefficient of HDDX ~1:5 and a half-induction level

given by 1=b (meaning that when B~b, DDX58 reaches half it

maximal induction). According to experiments, DDX58 is

constitutively expressed in the cells. The ratio between the

maximal induction of DDX58 and the constitutive induction is

given by C~1=50. IFNB1 induction depends on Rig-I concen-

tration in a Michaelis-Menten form with a Hill coefficient

HIFN~3, and a half-induction concentration give by 1=c. All

the degradation processes follow an exponential decay. The

processes and the rates at which they occur are summarized

IFNB1-DDX58 Feedback Loop Cell-to-Cell Variability
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Figure 8 (w indicates a source or a sink, used to denote creation or

degradation of molecules, respectively):

The values used for the rate constants are based on

experimental results, and were changed to fit the experimental

data. Specifically, in the simulation results shown in the paper the

valuesb~
1

75
, c~

1

7000
, dDDX ~

1

104sec
, dIFN~

1

104sec
, and

dRIG~
1

104sec
were used. In order to account for some of the

cell-to-cell variation, the transcription rate constants for each cell

in the simulation were chosen from a Gaussian distribution around

the values KDDX ~
1

20sec
, KRIG~

1

20sec
, with standard deviations

of 0.01, and values below 0.01 and above 0.05 were ignored and

re-sampled.

Inter-cellular Diffusion Simulation
The inter-cellular medium is simulated by a Monte-Carlo

simulation on a 2d square lattice. The simulations were performed

in 2D to reduce computational overhead and because, as discussed

below, the conclusions are applicable to the 3D case. The inter-

cellular simulation follows the diffusion of interferon molecules in the

medium, which is described by the diffusion equation. Thus the

average displacement of each molecule from its origin increases as the

square root of time. This result holds for 3d systems, as well as for 2d

ones. The difference between 2D and 3D can be accounted for by a

change in the value of the diffusion coefficient. In order to preserve

the average time for the diffusion to a neighboring cell, we keep the

average distance between neighboring cells equal to the one found in

3d. Besides the distance between nearest neighbors, the interaction

between secreted interferon molecules and a neighboring cell also

depends on the probability of binding to cell-surface receptors, and

the dimensionality of the system. By changing the cell surface binding

probability, we can replace the 3d system by an equivalent 2d system,

in which the interaction of neighboring cells is unchanged. We

recognize that there are differences between the 2D and 3D systems.

For example, in random walks in 2d as compared to 3d, the

probability of a molecule to return to its origin is higher. Therefore, in

our simulations, the amount of paracrine signaling is underestimated

compared to autocrine signaling. However, this difference is

immaterial for the questions addressed and for the conclusions of

the present study.

The 2d lattice is simulated using periodic boundary conditions,

and its grid size is set to be the diameter of a single cell, denoted L,

which is approximately 30 mm. Cells are distributed inside the

matrix randomly with a density that ensures the correct average

distance to nearest neighbors (as explained above). Each cell has a

probability of 50% of being infected or uninfected, in accordance

with the experimental MOI of 0.5. Uninfected cells do not

transcribe interferon. At each grid point the simulation follows the

amount of interferon molecules, denoted I, and uses the number of

free and bound interferon receptors obtained from each cell,

denoted F, and B, respectively. Grid squares that do not contain a

cell have zero F and B at all times. Receptor binding and

unbinding by IFNb are adapted from work described in reference

[30].

At each time step interferon molecules in lattice squares

containing cells may bind to free surface receptors, while bound

receptors may unbind. The binding rate is given by KON
:F :I ,

where KON~
1:25

106sec
is the binding rate constant. The unbinding

rate constant was found to be KOFF ~
1

103sec
. The rates per

receptor are slow enough so that for the chosen time-step we have

KON
:I :Dtvv1 and KOFF

:Dtvv1. Therefore we approximate

the binding probability of each free receptor in a time step by

KON
:I :Dt, and the unbinding probability for every bound receptor

by KOFF
:Dt.

The distribution of molecules in a diffusion-governed system

with initial condition of all the molecules concentrated at the

origin is expressed by a Gaussian function f x,y,tð Þ~
1

4ptD
e{ x2zy2ð Þ=4Dt, allowing calculation of the time by which

half the molecules pass a distance of a cell radius, giving

approximately 9 seconds (solving the equation
Ð L=2

{L=2
f (j,g,t)djdg~0:5, with L = 30 mm). We use this time

interval as the basic time-step in the simulation, during which

each interferon molecule has a probability of 50% to pass to a

neighboring lattice square. As a result, in each simulation step

each interferon molecule in each cell has a probability of 50% of

moving to one of the four neighboring cells. This ensures a

random walk behavior for a small number of molecules, and a

diffusion behavior for large numbers of molecules.

Figure 8. Processes, Descriptions and Rates. The processes, descriptions and rates for each of the six reactions in the stochastic simulations.
doi:10.1371/journal.pone.0016614.g008
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Synchronization Between Inter and Intra-Cellular
Simulation

The Monte-Carlo simulation and the Gillespie simulation run at

different time-scales and different length scales. The spatial

interaction is explicitly manifested by assigning each cell to a unique

lattice square. In order to account for the different time scales we

must synchronize the constant time step of the Monte-Carlo with the

variable (and often much faster) time step of the Gillespie simulations.

To do this, we allow the Gillespie algorithm of each cell to run for a

number of steps, until the total amount of time of these steps exceeds

the Monte-Carlo time step. The last step is not performed, and the

time is advanced to match the next Monte-Carlo time step. This

procedure ensures the simulation of a real Markovian process when

the external conditions change at pre-determined times.

Another aspect of synchronizing the inter-cellular Monte-Carlo

simulation with the intra-cellular Gillespie simulations involves the

secretion of interferon molecules from each cell. At each Monte-

Carlo step, each cell is queried for the number of IFNB1 messages

in that cell. We assume that the number of new interferon proteins

at each simulation time step is the number of IFNB1 transcripts

multiplied by a factor of M = 0.1 (which corresponds to a

translation rate of 1
90sec

). We further assume that interferon

secretion is a rapid process and that all the newly synthesized

interferon is secreted at each time step. The number of secreted

interferon molecules is added to the number of interferon

molecules in the lattice square occupied by the cell.

Simulations with Interferon-Blocking Antibodies
Two kinds of antibodies were introduced in the experiments.

One targets the interferon molecules, and the other targets the

interferon cell surface receptors. To include this in the simulation

we added two parameters to the Monte-Carlo simulation of the

inter-cellular medium. First we allowed each interferon molecule

to become inactive by binding to an antibody with a probability of

0.4 at each Monte-Carlo time step. This corresponds to an

effective degradation rate of approximately 1
25sec

, and allows the

interferon molecules to form a cloud around the emitting cells, but

hardly any can reach a neighboring cell. The binding rate was

reduced by multiplication of KON by a factor of 0.9. This means

that even the few molecules that are able to reach neighboring cells

have a harder time activating it, and is equivalent to reducing the

number of active receptors by the same factor of 0.9.

Supporting Information

Figure S1 Measurement of NDV L gene, IFNB1, IFNA1, MXA,

and DDX58 transcripts in human MDDCs at 0, 3, 6 and 10 hours

following NDV infection. Total mRNA expression of these genes

was quantified by real-time RT-PCR and induction fold increases

were normalized to the initial value at 0 hrs post infection. A.

IFNB1; B. DDX58; C. NDV L gene; D. MXA; E. IFNA1.

(TIF)

Figure S2 Time course for IFNB1 and DDX58 induction in

MDDCs infected by NDV at different MOI. MDDCs were

infected by NDV at MOI = 0.1, 0.5, 1.0, 2.0 and 5.0. Expression

levels were measured at 1, 2, 3, 4, 5, 6 and 10 hours after infection.

The relative induction level was normalized to ACTB and to an

uninfected control. A. IFNB1 (upper panel early times, lower panel

later times) B. DDX58.

(TIF)

Figure S3 Effect of DC heterogeneity in the DC response to

NDV infection. The real-time RT-PCR cross point (Cp) value

indicates the level of IFNB1 in each individual DC (high Cp value

means low expression). 6 hour after NDV infection, single

MDDCs sorted by DC differentiation marker CD14 (0 =

CD14+ high, 1 = CD14+ low) showed high heterogeneity in both

groups but no significant difference in IFNB1 production between

the two groups (p = 0.17).

(TIF)

Figure S4 Schematic illustrating the hemi-nested PCR protocol

used to measure IFNB1 mRNA levels in single DCs. DCs were

directly sorted into 384-well PCR plates prepared with lysis buffer.

Amplification of mRNAs was performed with the two-step hemi-

nested real time RT-PCR. The first step was reverse transcription

reaction followed by 8-cycle amplification. Internal control

oligonucleotides containing mutations (AA/TT substitution and

deletion of the Roche LNA probe binding site) and IFNB1 mRNA

transcripts were both amplified by the primers in this first step

reaction. The PCR products were split into two PCR wells and

further amplified and detected by second real time PCR reactions.

An IFNB1 cDNA-specific forward primer with AA at the 39end

and the IFNB1 cDNA-specific Roche LNA Taqman probe were

added into the second real time PCR reaction to discriminate the

PCR products from internal control oligonucleotides. The final

amplification signal of the second PCR originated only from the

IFNB1 mRNAs.

(TIF)

Figure S5 Validation of the hemi-nested real time PCR method

with serial dilutions of genomic DNA. 5A. Human genomic DNA

was used as the PCR template and serial diluted to 4000 copies,

400copies, 40 copies, 4 copies in each well. The PCR

amplification curves of 4 repeats of 4000 copies and 400 copies,

8 repeats of 40 copies, 10 repeats of 4 copies and negative controls

are shown. A standard curve of qcPCR with diluted genomic

DNA is presented as an inset. The linear fitting equation and r2

shown in the inset were given by KaleidaGraph. 5B. Real-time

PCR amplification curve of human genomic DNA standard using

IFNB1 control oligonucleotide specific primer. This oligonucleo-

tide specific primer has been designed to anneal only with PCR

amplicons originated from the IFNB1 control oligonucleotide

(details see Materials and Methods section). Our data showed

a very tight distribution at the different concentrations of the

genomic standard (103–fold range).

(TIF)

Figure S6 Validation of multiplexed hemi-nested real time PCR

detection with total RNA dilutions. Total RNAs were extracted

from MDDCs and 10-fold serially diluted until the final

concentration reached copy numbers similar to the low copy

genomic DNA standards depicted in Supplementary Figure S5A.

In order of RNA copy number from high to low, the results are for

results from 6 repeats, 6 repeats, 12 repeats and 18 repeats of PCR

reactions. 6A. PCR amplification curve of IFNB1 for total RNA

dilutions. 6B. PCR amplification curve of DDX58 for total RNA

dilutions. The final dilution did not show DDX58 amplification

due to lower expression of DDX58 than IFNB1 (less than 1 copy/

cell).

(TIF)

Figure S7 Two dimensional agent-based model (ABM). The

extracellular model is two dimensional, and the medium is

represented by a square lattice, where each lattice square has the

size of a single cell. Each cell is simulated as an independent agent,

where the agents interface through the extracellular medium.

(TIF)
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Text S1 Detailed PCR Protocols.

(DOCX)

Text S2 Changing the Variance and Maintaining Early

Responder Percentage.

(DOCX)
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